Detection Skin Disease using Convolutional Neural Network Model
DOI:
https://doi.org/10.62205/mjgcs.v2i2.51Keywords:
Skin Disease, CNN, TensorFlow, HAM10000, Image Classification, Dermatology, Deep Learning, DiagnosisAbstract
Skin diseases are one of the most important global health problems; thus, early and correct diagnosis is very critical for effective treatment. The following research introduces a Convolutional Neural Network model developed in TensorFlow for classifying skin diseases based on the Skin Cancer MNIST: HAM10000 dataset, a rich collection of dermatoscopic images of pigmented lesions. The goal is to improve diagnostic accuracy and efficiency through automated image classification. The dataset undergoes preprocessing in order to improve the model's generalization ability. Design a CNN model and train it on a large number of images to distinguish different lesion types. Measure its performance based on various metrics, including accuracy, precision, recall, and F1-score. Preliminary results achieved very high accuracy in the classification task, which is an indicative capability for the support model. Future research will be targeted at real-time applications, including the addition of more data to increase coverage. The present study emphasizes the potential role of deep learning in medical diagnostics and provides a useful tool for the automatic recognition of skin diseases, thereby contributing to improved health outcomes.
References
N. Andrini, “Karakteristik Dan Perawatan Kulit Untuk Orang Asia ,” PANDU HUSADA, vol. 4, no. 3, 2023.
I. W. Prastika and E. Zuliarso, “DETEKSI PENYAKIT KULIT WAJAH MENGGUNAKAN TENSORFLOW DENGAN METODE CONVOLUTIONAL NEURAL NETWORK,” Jurnal Manajemen Informatika dan Sistem Informasi, vol. 4, no. 2, pp. 84–91, Oct. 2021, doi: https://doi.org/10.36595/misi.v4i2.418.
Q. Aini, N. Lutfiani, H. Kusumah, and M. S. Zahran, “Deteksi dan Pengenalan Objek Dengan Model Machine Learning: Model Yolo,” CESS (Journal of Computer Engineering, System and Science), vol. 6, no. 2, p. 192, Jul. 2021, doi: https://doi.org/10.24114/cess.v6i2.25840 .
L. Triyono et al., “KLASIFIKASI PENYAKIT KULIT MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK.”
A. Wicaksono, S. Farisa, C. Haviana, and A. Riansyah, “Rancang Bangun Aplikasi Android Deteksi Penggunaan Masker Wajah Menggunakan Tensorflow Mobilenet,” Jurnal Transistor Elektro dan Informatika (TRANSISTOR EI), vol. 5, no. 1, pp. 1411–366, 2023.
P. Tschandl, C. Rosendahl, and H. Kittler, “The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions,” Scientific Data, vol. 5, no. 1, Aug. 2018, doi: https://doi.org/10.1038/sdata.2018.161 .
J. Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp.68–73 .
A. Howard et al., “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications,” Apr. 2017. Accessed: Jan. 09, 2025. https://arxiv.org/abs/1704.04861?form=MG0AV3.
B. Hartanto, B. W. Yudanto, D. Nugroho, and S. Tomo, “IMPELEMENTASI CONVOLUTIONAL NEURAL NETWORK MENGGUNAKAN MODEL MOBILENET DALAM APLIKASI PRESENSI BERBASIS PENGENALAN WAJAH,” Biner : Jurnal Ilmiah Informatika dan Komputer, vol. 3, no. 1, pp. 22–26, Jan. 2024, doi: https://doi.org/10.32699/biner.v3i1.6607.
B. Khasoggi, E. Ermatita, and S. Samsuryadi, “Efficient mobilenet architecture as image recognition on mobile and embedded devices,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 16, no. 1, p. 389, Oct. 2019, doi: https://doi.org/10.11591/ijeecs.v16.i1.pp389-394 .
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Dinda Putri Ramadani, Praditya Oktanza Djaduk Wibisono, Prayitno

This work is licensed under a Creative Commons Attribution 4.0 International License.