Detection of Chili Plant Pests and Diseases using Yolov5
DOI:
https://doi.org/10.62205/mjgcs.v2i2.40Keywords:
YOLOv5, object detection, chili plant, pest detection, computer vision, deep learningAbstract
The rapid advancement of technology has led to the development of various innovative techniques that assist humans in numerous domains, including object detection, which serves to identify individual elements within an image. Object detection is widely utilized due to its ability to accurately recognize each component in an image, making it valuable in addressing real-world challenges. One such challenge is the decline in agricultural income resulting from diseases affecting chili plants. The cultivation of chili plants faces several obstacles, including weather-related factors that contribute to the spread of pests and diseases, ultimately reducing chili production. By implementing object detection technology, farmers can easily identify plant diseases through image analysis, enabling timely and effective treatment. This study employs the YOLOv5 algorithm to evaluate the model's performance in detecting diseases in chili plants. The images used were captured using a smartphone camera with a resolution of 3472×3472 pixels. A total of 430 images were utilized, divided into three subsets: training data, validation data, and test data. To obtain the optimal model, the study conducted three experiments using different data distribution ratios: Experiment 1 with a 70:20:10 split, Experiment 2 with a 75:15:10 split, and Experiment 3 with an 80:10:10 split. Among these, the third experiment yielded the best performance, achieving an average test accuracy of 0.947. The corresponding precision, recall, and mean Average Precision (mAP) scores were 0.946, 0.936, and 0.959, respectively
References
Pranata, I. M. D., Darma, I. W. A. S., Sandhiyasa, I. M. S., & Wiguna, I. K. A. G. (2023). Strawberry Disease Detection Based on YOLOv8 and K-Fold Cross-Validation. Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi), 11(3),
https://doi.org/10.24843/jim.2023.v11.i03.p06
Erwin, Muhammad Ryan Syah Putrada, A. G., & Triawan, M. A. (2021). Deteksi Hama Ulat Pada Tanaman Selada Berbasis Aquaponic Menggunakan CNN (Convolutional Neural Network). E-Proceeding of Engineering, 8(5), 10254–10263.
Tanjung, M. Y., Kristalisasi, E. N., & Yuniasih, B. (2018). Keanekaragaman Hama dan Penyakit Pada Tanaman Cabai Merah (Capsicum annum) Pada Daerah Pesisir dan Daratan Rendah. Jurnal Agromast, 3(1), 58–66. http://www.tjyybjb.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=9987
Udiarto, B. K., Setiawati, W., & Suryaningsih, E. (2005). Pengenalan dan Pengendalian Hama-hama Penting pada Tanaman Cabai Merah. In Panduan Teknis PTT Cabai Merah No. 3 (Vol. 1, Issue 2).
Kim, J. H., Kim, N., Park, Y. W., & Won, C. S. (2022). Object Detection and Classification Based on YOLO-V5 with Improved Maritime Dataset. Journal of Marine Science and Engineering, 10(3). https://doi.org/10.3390/jmse10030377
Dzaky, A. T. R. (2021). Deteksi Penyakit Tanaman Cabai Menggunakan Metode Convolutional Neural Network. E-Proceeding ofEngineering,8(2),3039–3055
C. Geraldy, C. Lubis, “Pendeteksian Dan Pengenalan Jenis Mobil Menggunakan Algoritma You Only Look Once Dan Convolutional Neural Network,” Jurnal Ilmu Komputer dan Sistem Informasi, vol. 8, no. 2, 2020.
Baihaqi, K. A., Zonyfar, C., & Indonesia, J. B. (2022). Deteksi Lahan Pertanian Yang Terdampak Hama Tikus Menggunakan Yolo v5. 11(02), 1–9.
Putra Pranjaya, A., Rizki, F., Kurniawan, R., & Daulay, N. K. (2024). KLIK: Kajian Ilmiah Informatika dan Komputer Klasifikasi Penyakit Pada Daun Tanaman Padi Berbasis YoloV5 (You Only Look Once). Media Online), 4(6), 3127–3136. https://doi.org/10.30865/klik.v4i6.1916
Dix, A. (2005). Human-Computer Interaction,34
Mulyana, D. I., Sufriman, A., & Yel, M. B. (2023). IMPLEMENTASI DETEKSI EMOSIONAL PADA WAJAH
MENGGUNAKAN DEEP LEARNING - YOLOv5. JUTECH : Journal Education and Technology, 4(1), 12–22. https://doi.org/10.31932/jutech.v4i1.2174
Downloads
Published
Issue
Section
License
Copyright (c) 2025 sherli khairunisah, Siti Lutfiah, Fitria Musdalifah

This work is licensed under a Creative Commons Attribution 4.0 International License.
