Vehicle Police Number Detection Using Yolov8

Authors

  • Gilang Ramadhan Department of Informatics, Dinamika Bangsa University
  • Revinda Dwi Artanti Khairiyah Department of Informatics, Dinamika Bangsa University
  • Salwa Natania Department of Informatics, Dinamika Bangsa University
  • Abdul Harris Department of Informatics, Dinamika Bangsa University

DOI:

https://doi.org/10.62205/mjgcs.v1i2.25

Keywords:

Machine leanring, Yolov8, Object detection, Police number, Detection

Abstract

This research discusses the application of the YOLOv8 object detection model in recognizing and extracting vehicle license plate numbers from vehicle images. This method leverages deep learning technology to achieve accurate and efficient detection of license plates under various visual conditions. The proposed approach utilizes deep neural networks to identify and extract license plate information with high precision. Experiments and evaluations were conducted using a diverse vehicle dataset, demonstrating YOLOv8's capability to detect license plates quickly and reliably. The experimental results show a promising accuracy level, highlighting the significant potential of this approach for vehicle license plate detection applications. The achieved accuracy rate is 90%.

References

J. R. Terven and D. M. Cordova-esparza, “Yolo: f,” pp. 1–34, 2023.

D. Reis, J. Kupec, J. Hong, and A. Daoudi, “Real-Time Flying Object Detection with YOLOv8”.

R. Illmawati, “YOLO v5 untuk Deteksi Nomor Kendaraan di DKI Jakarta YOLO V5 for Vehicle Plate Detection in DKI Jakarta,” J. Komput. Abdi Inform., vol. 10, pp. 32–43, 2023.

Y. Galahartlambang, T. Khotiah, Zahruddin Fanani, and Afifatul Aprilia Yani Solekhah, “Deteksi Plat Nomor Kendaraan Otomatis Dengan Convolutional Neural Network Dan Ocr Pada Tempat Parkir Itb Ahmad Dahlan Lamongan,” J. Manaj. Inform. dan Sist. Inf., vol. 6, no. 2, pp. 114–122, 2023, doi: 10.36595/misi.v6i2.754.

S. Suhartono, S. Gunawan Zain, and S. Sugiawan, “Sistem Object Recognition Plat Nomor Kendaraan Untuk Sistem Parkir Bandara,” J. Embed. Syst. Secur. Intell. Syst., vol. 3, no. 2, p. 127, 2022, doi: 10.26858/jessi.v3i2.38458.

D. Tran-anh, K. L. Tran, and H. Vu, “LICENSE PLATE RECOGNITION BASED ON MULTI-ANGLE VIEW MODEL,” no. i.

M. Henrique Fonseca Afonso et al., “Vehicle and Plate Detection for Intelligent Transport Systems: Performance Evaluation of Models YOLOv5 and YOLOv8,” no. August, 2021, doi: 10.13140/RG.2.2.11022.95042.

M. Q. Kheder and A. A. Mohammed, “Real-time traffic monitoring system using IoT-aided robotics and deep learning techniques,” Kuwait J. Sci., no. October, 2023, doi: 10.1016/j.kjs.2023.10.017.

B. Xiao, M. Nguyen, and W. Q. Yan, “Fruit ripeness identification using YOLOv8 model,” Multimed. Tools Appl., no. August, 2023, doi: 10.1007/s11042-023-16570-9.

M. Hussain, “YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection,” Machines, vol. 11, no. 7, 2023, doi: 10.3390/machines11070677.

L. Lu, “Improved YOLOv8 Detection Algorithm in X-ray Contraband,” vol. 3, no. 3, 2023.

Downloads

Published

2024-06-29

Issue

Section

Articles