Detection of Hoax News Using TF-IDF Vectorizer and Multinomial Naïve Bayes and Passive Aggressive
DOI:
https://doi.org/10.62205/mjgcs.v1i2.24Keywords:
Hoax, New Website, Tf-idf Vectorizer, Naive Bayes Multinominal, Passive AggressiveAbstract
The website is a source of information, but not all information is guaranteed to be correct. Some news can be
considered hoaxes or not based on facts. This research aims to build a hoax news detection system on English language
news websites. The method used involves the multinomial Naive Bayes and Passive Aggressive approaches.
Classification report analysis shows the superiority of the Passive Aggressive Classifier with significant improvements
in all evaluation metrics compared to Multinomial Naïve Bayes. The conclusion is based on the characteristics of the
dataset, confirming the effectiveness of the Passive Aggressive Classifier in solving the task of classifying fake news in
English, with the highest accuracy reaching 93.74%.
References
Rozi, Faizal Nur, and Dwi Harini Sulistyawati. “KLASIFIKASI BERITA HOAX PILPRES MENGGUNAKAN METODE MODIFIED K-
NEAREST NEIGHBOR DAN PEMBOBOTAN MENGGUNAKAN TF-IDF.” KONVERGENSI 15, no. 1 (October 1, 2019).
https://doi.org/10.30996/konv.v15i1.2828.
Rahutomo, Faisal, Inggrid Yanuar Risca Pratiwi, and Diana Mayangsari Ramadhani. “Eksperimen Naïve Bayes Pada Deteksi Berita H oax
Berbahasa Indonesia.” JURNAL PENELITIAN KOMUNIKASI DAN OPINI PUBLIK 23, no. 1 (July 1, 2019).
https://doi.org/10.33299/jpkop.23.1.1805.
Nabila Rizqi Amalia Nur Asri, Rendra Soekarta, Muhammad Yusuf ”DeteksiTeksBerita Hoax Bahan Bakar Minyak (BBM) Menggunakan
Metode K-Nearst Neighbor”
Handika, Yola Tri, Sarjon Defit, and Gunadi Widi Nurcahyo. “TEXT MINING DALAM MEMBANDINGKAN METODE NAÏVE BAYES
DENGAN C.45 DALAM MENGIDENTIFIKASI BERITA HOAX PADA MEDIA SOSIAL.” Rang Teknik Journal 5, no. 1 (January 6, 2022):
–23. https://doi.org/10.31869/rtj.v5i1.2855.
Lazuardi, Maulana Fajar, Renaldy Hiunarto, Kareena Futri Ramadhani, Noviandi Noviandi, Riya Widayanti, and Muhamad Hadi Arfia n.
“Hoax News Detection Using Passive Aggressive Classifier And TfidfVectorizer.” JURNAL TEKNIK
Lazuardi, Maulana Fajar, Renaldy Hiunarto, Kareena Futri Ramadhani, Noviandi Noviandi, Riya Widayanti, and Muhamad Hadi Arfia n.
“Hoax News Detection Using Passive Aggressive Classifier And TfidfVectorizer.” JURNAL TEKNIK INFORMATIKA 16, no. 2 (December 22,
: 185–93. https://doi.org/10.15408/jti.v16i2.34084.
Information Security and Networking Research Group (In FORSNET), Faculty of Information Communication Technology, Universiti
Teknikal Malaysia Melaka, Malaysia., Sy. Yuliani, Shahrin Sahib, Information Security and Networking Research Group (InFORSNET),
Faculty of Information Communication Technology, Universiti Teknikal Malaysia Melaka, Malaysia., Mohd Faizal Bin Abdollah, In formation
Security and Networking Research Group (InFORSNET), Faculty of Information Communication Technology, Universiti Teknikal Mala ysia
Melaka, Malaysia., Fariska Z. Ruskanda, and School of Electrical Engineering and Informatics, School of Electrical Engine ering and
Informatics, Indonesia. “Hoax News Classification Using Machine Learning Algorithms.” International Journal of Engineering and Advanced
Technology 9, no. 2 (December 30, 2019): 3938–44. https://doi.org/10.35940/ijeat.B3753.129219.
Safitri, Intan Anggreaeni, and Teddy Dyatmika. “Pentingnya Literasi Bahaya Hoax Kepada Masyarakat Desa Sidorejo di Era Globalisasi,”
Wirawan, Rio, and M Bayu Wibisono. “PERANCANGAN APLIKASI SOSIAL MEDIA UNTUK ANALISIS BERITA HOAX,” 2017.
Department of Computer Science, College of Science, Al-NahrainUniversity, Baghdad, Iraq, Reham Jehad, Suhad A.Yousif, and Department
of Computer Science, College of Science, Al-NahrainUniversity, Baghdad, Iraq. “Fake News Classification Using Random Forest and
Decision Tree (J48).” Al-Nahrain Journal of Science 23, no. 4 (December 1, 2020): 49–55. https://doi.org/10.22401/ANJS.23.4.09.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Rizky Adrian, Musaddam, Muhammad Ikhsan, M. Riza Pahlevi. B
This work is licensed under a Creative Commons Attribution 4.0 International License.