Identification of Indonesian Sign Language System Using Deep Learning in Yolo-based

Authors

  • Arahmad taupiq Department of Informatics, Dinamika Bangsa University
  • Muhammad Wildan Fajri Department of Informatics, Dinamika Bangsa University
  • Dannylee Department of Informatics, Dinamika Bangsa University

DOI:

https://doi.org/10.62205/mjgcs.v1i2.22

Keywords:

SIBI, Computer Vision, Yolo, Sing Language Recognition, Deep Learing

Abstract

Deafness, or hearing impairment, refers to the loss of auditory capability in one or both ears. Deaf communities often develop sign languages to facilitate communication. Sign language, which employs hand movements, is commonly adopted by individuals with hearing impairments. In Indonesia, two primary sign languages are used: BISINDO (Bahasa Isyarat Indonesia) and SIBI (Sistem Isyarat Bahasa Indonesia). The main distinction between these languages is that BISINDO employs both hands for signing, whereas SIBI uses only one hand. Individuals with hearing impairments face significant communication challenges. This study focuses on the detection of alphabets in the Indonesian Sign Language System (SIBI) using YOLO v5. The objective is to recognize alphabetic characters through hand gesture signals. Experimental results indicate a detection success rate of 95.38%, accurately identifying 23 out of the 24 tested letters.

References

Noermanzah, “Bahasa sebagai Alat Komunikasi, Citra Pikiran, dan Kepribadian,” in Prosiding Seminar Nasional Bulan Bahasa (Semiba), 2019, pp. 306–319. [Online]. Available: https://ejournal.unib.ac.id/index.php/semiba

M. B. S. Bakti and Y. M. Pranoto, “Pengenalan Angka Sistem Isyarat Bahasa Indonesia Dengan Menggunakan Metode Convolutional Neural Network,” Semin. Nas. Inov. Teknol., vol. 1, no. 1, pp. 11–16, 2019.

Y. U. Solikhatun, “Penyesuaian Sosial Pada Penyandang Tunarungu di SLB Negeri Semarang,” Educ. Psychol. J., vol. 1, no. 1, pp. 65–72, 2013.

Dr. Samto, “Kamus SIBI Kerjasama antara Kementerian Pendidikan dan Kebudayaan dengan Lembaga Penelitian dan Pengembangan Sistem Isyarat Bahasa Indonesia ,” Kamus SIBI - Direktorat PMPK.

V. M. Lumabiang, C. Andris, L. Manaha, and A. T. Liem, “Prototipe Pendeteksi Object Menggunakan Computer Vision dan Raspberry Pi,” in SENSITIf 2019. Manado, 2020, pp. 1341–1351.

R. I. Borman, B. Priyopradono, and A. R. Syah, “Klasifikasi Objek Kode Tangan pada Pengenalan Isyarat Alphabet Bahasa Isyarat Indonesia (BISINDO),” in Seminar Nasional Informatika dan Aplikasinya (SNIA), 2018, no. September, pp. 1–4.

Nasha Hikmatia A.E. and M. I. Zul, “Aplikasi Penerjemah Bahasa Isyarat Indonesia menjadi Suara berbasis Android menggunakan Tensorflow,” J. Komput. Terap., vol. 7, no. 1, pp. 74–83, 2021, doi: 10.35143/jkt.v7i1.4629.

P. Kurnia Sari, G. Qorik Oktagalu Pratamasunu, and F. Nur Fajri, “Deteksi Tangan Otomatis Pada Video Percakapan Bahasa Isyarat Indonesia Menggunakan Metode Deep Gated Recurrent Unit (GRU),” J. Komput. Terap., vol. 8, no. 1, pp. 186–193, 2022, doi: 10.35143/jkt.v8i1.4901.

A. A. B, A. Amin, and M. W. Kasrani, “Penerapan Metode Yolo Object Detection V1 Terhadap Proses Pendeteksian Jenis Kendaraan Di Parkiran,” J. Tek. Elektro Uniba (JTE UNIBA), vol. 6, no. 1, pp. 194–199, 2021, doi: 10.36277/jteuniba.v6i1.130.

J. H. Sri Wisna et al., “Deteksi Kendaraan Secara Real TimeMenggunakan Metode YOLO Berbasis Android,” vol. 09, no. 01, pp. 8–14, 2020.

Downloads

Published

2024-06-29

Issue

Section

Articles