Optimization of Heart Failure Risk Prediction Using Random Forest Classifier Algorithm

Authors

  • M Nabil Fadhlurrahman UNAMA
  • Eko Arip Winanto Department of Computer Engineering, Dinamika Bangsa University

DOI:

https://doi.org/10.62205/mjgcs.v2i2.105

Keywords:

Optimization, Prediction, Heart Failure, Algorithm, Random Forest Classifier

Abstract

This study discusses the optimization of heart failure prediction using the Random Forest Classifier algorithm with a focus on feature selection marked by a threshold and the number of features used. The results of the analysis show that the right threshold has a significant effect on model performance. At a threshold of 0.02, the model achieves the best performance with the highest accuracy, precision, and F1-score values. However, increasing the threshold above 0.08 causes a gradual decrease in model performance. In addition, the number of features used also affects the prediction results, where the right combination of features can increase the effectiveness of the classification. Therefore, this study emphasizes the importance of optimizing thresholds and feature selection in building more accurate and efficient prediction models.

 

References

World Health Organization (WHO), “Cardiovascular diseases (CVDs),” World Health Organization (WHO).

Kemenkes RI, “World Heart Day 2023: Use Heart Know Heart,” 2023.

Ogunpola, A., Saeed, F., Basurra, S., Albarrak, A. M., & Qasem, S. N. (2024). Machine Learning-Based Predictive Models for Detection of Cardiovascular Diseases. Diagnostics (Basel, Switzerland), 14(2), 144. https://doi.org/10.3390/diagnostics14020144

Dorraki, M, Liao, Z, Abbott, D. et al. (2024), Improving Cardiovascular Disease Prediction With Machine Learning Using Mental Health Data: A Prospective UK Biobank Study. JACC Adv. https://doi.org/10.1016/j.jacadv.2024.101180

Bhatt, Chintan & Patel, Parth & Ghetia, Tarang & Mazzeo, Pier Luigi. (2023). Effective Heart Disease Prediction Using Machine Learning Techniques. Algorithms. 16. 88. 10.3390/a16020088.

Weng, S. F., et al. (2017). Can machine-learning improve cardiovascular risk prediction using routine clinical data? PLoS One, 12(4), e0174944.

Madani, A., et al. (2018). Fast and accurate view classification of echocardiograms using deep learning. npj Digital Medicine, 1(1), 6.

Topol, E. J. (2019). High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine, 25(1), 44-56.

Naser, M.A, et all, (2024),A Review of Machine Learning’s Role in Cardiovascular Disease Prediction: Recent Advances and Future Challenges. Volume 17(2), Issue 2, https://doi.org/10.3390/ a17020078

S. A. Putri, N. Selayanti, M. Kristanaya, M. P. Azzahra, M. G. Navsih, and K. M. Hindrayani, “Penerapan Machine Learning Algoritma Random Forest Untuk Prediksi Penyakit Jantung,” Seminar Nasional Sains Data, vol. 2024, [Online]. Available: https://www.kaggle.com/datasets/fedesoriano/heart-failure-prediction.

P. Tamba, “PREDIKSI PENYAKIT GAGAL JANTUNG DENGAN MENGGUNAKAN RANDOM FOREST,” Jurnal Sistem Informasi dan Ilmu Komputer Prima), vol. 5, no. 2, 2022.

Jianyu M, Lingfeng N, "A Survey on Feature Selection", Procedia Computer Science., Volume 91, 2016, Pages 919-926, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2016.07.111.

M. Rong, D. Gong and X. Gao, "Feature Selection and Its Use in Big Data: Challenges, Methods, and Trends," in IEEE Access, vol. 7, pp. 19709-19725, 2019, doi: 10.1109/ACCESS.2019.2894366.

M. R. Islam, A. A. Lima, S. C. Das, M. F. Mridha, A. R. Prodeep and Y. Watanobe, "A Comprehensive Survey on the Process, Methods, Evaluation, and Challenges of Feature Selection," in IEEE Access, vol. 10, pp. 99595-99632, 2022, doi: 10.1109/ACCESS.2022.3205618.

S. Uddin, I. U. Haq, J. Khan, M. A. Salam, dan M. A. Khan, “Feature selection techniques for machine learning: a survey of more than two decades of research,” Knowl. Inf. Syst., vol. 65, no. 12, hal. 1–37, Des. 2023, doi: 10.1007/s10115-023-02010-5.

M. Kuhn dan K. Johnson, Applied Predictive Modeling. New York, NY, USA: Springer, 2013, hal. 488–499, ISBN: 978-1461468486.

M. Alghamdi, R. Alharbey, dan S. Kocaman, “A review of feature selection methods for machine learning-based disease risk prediction,” Front. Bioinform., vol. 2, hal. 927312, Agt. 2022, doi: 10.3389/fbinf.2022.927312.

N. Singh, P. Singh, dan K. Bhagat, “Analyzing the impact of feature selection methods on machine learning algorithms for h eart disease prediction,” Sci. Rep., vol. 13, no. 1, hal. 22805, Des. 2023, doi: 10.1038/s41598-023-49962-w.

M. R. Karim, T. Rahman, M. S. Islam, and M. A. Rahman, “A review of feature selection methods for machine learning-based disease risk prediction,” Frontiers Bioinformat., vol. 2, p. 927312, 2022, doi: 10.3389/fbinf.2022.927312.

L. Ma, H. Huang, and M. A. Risch, “Integrative feature selection for HDL-C prediction using machine learning,” BMC Bioinformat., vol. 16, no. 1, p. 147, 2015, doi: 10.1186/s12859-015-0565-5.

M. G. Hafez, M. A. Ghoneim, and H. E. ElDeeb, “Analyzing the impact of feature selection methods on machine learning algorithms for heart disease prediction,” Sci. Rep., vol. 13, no. 1, p. 49962, 2023, doi: 10.1038/s41598-023-49962-w.

S. S. Verma, A. Lucas, and T. Zhang, “An ensemble feature selection method for classification,” Knowl. Inf. Syst., vol. 57, no. 2, pp. 307–325, 2018, doi: 10.1007/s10115-018-1184-5.

N. D. Wahid, A. S. M. Kayes, and M. S. Islam, “Selecting critical features for data classification based on machine learning methods,” J. Big Data, vol. 7, no. 1, p. 52, 2020, doi: 10.1186/s40537-020-00327-4.

R. Iranzad, Y. Liu, Y. Sun, and A. C. Tan, “A review of random forest-based feature selection methods for data science education and applications,” Int. J. Data Sci. Anal., vol. 17, no. 4, pp. 421–439, 2024, doi: 10.1007/s41060-024-00509-w.

J. L. Speiser, M. E. Miller, J. Tooze, and E. Ip, “A comparison of random forest variable selection methods for classification prediction modeling,” Expert Syst. Appl., vol. 134, pp. 93–101, Nov. 2019, doi: 10.1016/j.eswa.2019.05.028.

Downloads

Published

2025-06-30

Issue

Section

Articles